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Abstract

Matching corresponding local patches between images

is a fundamental building block in many computer-vision

algorithms. Most matching methods are composed of two

main stages: feature extraction, typically done indepen-

dently on each image, and feature matching which is done

on processed representations. This strategy tends to cre-

ate large amounts of matches, typically describing small,

highly-textured regions within each image. In many cases,

large portions of the corresponding images have a sim-

ple geometric relationship. We exploit this fact and re-

formulate the matching procedure to an estimation stage,

where we extract large domains roughly related by lo-

cal transformations, and a convolutional Co-Segmentation

stage, for densely detecting accurate matches in every do-

main. Consequently, we represent the geometrical relation-

ship between images with a concise list of accurately co-

segmented domains, preserving the geometrical flexibility

stemmed from local analysis. We show how the proposed

co-segmentation improves the matching coverage to accu-

rately include many low-textured domains.

1. Introduction

1.1. Image Matching

Image matching (or registration) is a fundamental prob-

lem in computer vision being consistently addressed in re-

search for the last decades. This work focuses on the com-

mon case of registering two 2-D RGB images, where we

seek for the 2-D correspondence field (with notation abuse):

−−→
Fx,y ∼ I2(u+ Fx(u, v), v + Fy(u, v)) ∀(u, v) ∈ Ω−→

F

Where I1,I2 are two RGB images which share different pro-

jections of the same 3-D surfaces, and Ω−→
F

is the domain of
−−→
Fx,y . By ∼, we mean a projection of the same 3-D patch

in every point, and not necessarily the same RGB level. We

note that in many cases,
−−→
Fx,y is not defined in all of I1due to

Figure 1: Demonstrating the proposed method vs. its initial-

izer (Harris-Affine in this case): Initial matches are refined

and adjusted to accurately capture significant parts of Ω−→
F

,

with a compact representation of the matching field
−−→
Fx,y .

Corresponding Regions are overlaid with the same color.

common scene or viewpoint variations like occlusions, non-

rigid motions or even zoom. We also note that
−−→
Fx,y does not

fully represent the geometric relation between the images,

as I2is not necessarily contained in the range of
−−→
Fx,y . For

this purpose, we can similarly define the reciprocal:

−−→
F ′

x,y ∼ I1(u+ F ′

x(u, v), v + F ′

y(u, v)) ∀(u, v) ∈ Ω−→

F ′

Combining
−−→
Fx,y and

−−→
F ′

x,y fully represents the geometric

relations between the images with significant redundancy.

Since
−−→
Fx,y and

−−→
F ′

x,y can be similarly analyzed, we focus

our further discussion only on
−−→
Fx,y for simplicity. Local im-

age matching is an attempt to independently estimate
−−→
Fx,y

in limited domains where its behavior is relatively simple

and the radiometrical variations can be easily compensated

[23, 2, 6]. In practice, classic local matching approaches

still suffer from two main shortcomings: 1) Coverage - re-

peatable features are typically found only in texture rich lo-

cations; 2) False Matches - mostly due to residual inaccu-
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racies of the different extraction methods, and the limited

amount of information within small features. These short-

comings introduce a trade-off. Increasing the coverage by

considering low-textured features, increases the rate of false

matches, while tightening the matching thresholds typically

reduces the coverage. We stress that these shortcomings are

inherent to two main characteristics of existing local match-

ing approaches: over-localization and image independence.

We show that accurately adjusting the shape of local fea-

tures by considering information from more than one im-

age, drastically reduces the rate of false matches while sig-

nificantly increasing the coverage.

1.2. Beyond Single Image Feature Detection

For locating appropriate point-matching candidates,

state-of-the-art methods had to consider both the localiz-

ability of the feature and the local geometric variability of

the image. Localizable features are often related to texture

attributes like corners or blobs [16, 23] which are also ro-

bust to illumination changes. These texture-based features

should be automatically adjusted to capture the same phys-

ical patch across different views. In [23] a scale-space is

used for locating the characteristic scale of a circular (or

square) feature in a given image. The choice of charac-

teristic scale or shape, fundamentally affects the ability to

realiably match the features. Choosing a very small scale

may introduce a numerical challenge[11], while choosing

too-large scales may overshoot or force a complicated ge-

ometric model. Thus, the ideal choice of shape would be

the maximal shape that still preserves a simple model (e.g.

affine). Since this choice is depended on the geometrical

relations between images (namely in
−−→
Fx,y), it cannot be de-

rived from texture analysis of a single image. Thus, sin-

gle image based feature detectors are not built to system-

atically capture the ideal shape. In this context, this work

has two main contributions: 1) Defining the ideal local

feature around a point; 2) Developing a method that ma-

nipulates initially detected feature matches, to approximate

these ideal features. We show how these improved features

both increase the local matching accuracy, and dramatically

expand the coverage of Ω−→
F

.

1.3. Fully Dense Matching

For many applications, it is very beneficial to have an

accurate estimation of
−−→
Fx,y in every pixel[15, 18]. A key

challenge here is that isolated patches hold a very small

amount of information, while the potential variability of the

corresponding 3-D patch is huge. This challenge has been

thoroughly addressed in the literature, mainly in the context

of global optical-flow[13], stereo[32, 8, 24], or model-free

matching methods[15, 18], where specific assumptions are

made on the continuity of
−−→
Fx,y , or on the extent of the ra-

diometric variations. In the context of local-matching, this

motivation was almost irrelevant, as most methods produce

a sparse set of matches in highly-textured locations, that

cover only a small part of Ω−→
F

. In contrast, Super-pixel

based methods[4, 10] are used to cover low-textured local

regions in a co-segmentation fashion, but lack a tight cou-

pling of geometric constraints to the segmentation task, and

often suffer from low repeatability [4, 10]. In this work,

we tackle the problem of estimating fully-dense local cor-

respondence fields around local matches by decoupling the

problems of registration and co-segmentation. First, we uti-

lize the geometric accuracy stemmed from physically justi-

fied local models to achieve accurate geometric hypotheses

on local domains of the image. Then, much like [31, 19],

we resort to the high representational power of convolu-

tional neural networks (CNN’s) to handle the overwhelming

verity of radiometric nuisances and densely validate these

hypotheses . As a result, we enhance each local match to

include an accurate fully-dense correspondence field of its

surrounding, including low-textured regions, while preserv-

ing the geometric and radiometric robustness of local fea-

tures.

1.4. Closely Related Work

The idea of performing local analysis on tentative feature

matches is not new. [12] introduced an iterative methodol-

ogy to propagate geometric transformations induced by ini-

tially matched regions for locating new matches in neigh-

boring areas. In [29], an optimization problem was for-

mulated for co-expanding each initially detected match-

ing regions, while jointly adjusting the local transformation

model. In [15], a coarse-to-fine optimization approach was

used to capture global non-rigid transformations, while uti-

lizing local constraints in different scales. In [30], para-

metric models were used as primitives for globally estimat-

ing the optical flow. In contrast, we concentrate on ana-

lyzing independent local matches based on the affine and

perspective models. This enables the decomposition of the

registration problem into: 1) Transformation Estimation -

where we utilize classic linear estimation techniques; and

2) Co-Segmentation - where we build on the representa-

tional power of CNN’s, and their proven strengths in seg-

mentation tasks[22]. Utilizing the affine model for expand-

ing the local analysis was explored in [7], while [11] used

a similar mechanism to also gradually improve local affine

transformation estimations. The rational behind the expan-

sion approach (other than reduction), is that since state-of-

the-art feature detection is done from single images, these

methods are often driven to a safe choice of small scaled

features that is less probable to exceed a simple geometric

model. We utilize this idea for accurate co-expansion (or

co-reduction) of initially matched features and augment it

with a fully dense analysis of local environments. As a re-

sult, we represent the geometrical relationship between two
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images using a concise list of matches (as demonstrated in

Fig. 1) that captures a significant part of Ω−→
F

.

2. Bigger Local Matches

We claim that local features around points indeed have

a desired characteristic shape. The choice of shape fun-

damentally determines the minimal geometrical model that

captures the potential transformations of the feature across

different views. As the geometry around a point can only

get more complicated as the feature expands, the choice

of the ideal shape is determined by two fundamental con-

victions: 1) Bigger features contain more context and al-

low more accurate geometrical modeling [11]; 2) Features

should preserve the simplest model that locally approxi-

mates a smooth surface (the affine model). Thus, we define

the desired feature shape as the:

Definition 1. Maximal Affine Set (MAS) - The maximal set

of points (pixels) around a given point that can be registered

by the same affine transformation

We note that a MAS is defined only given more than

one image of its surroundings. For example, given two im-

ages related by a pure affine transformation, there is a single

MAS that contains the entire image. Adversely, in case of

highly dynamic scenes, many smaller disjoint MAS exit be-

tween different views. In many cases where planar surfaces

are very common (e.g. domestic or urban scenes), a max-

imal affine set can capture a significant local piece of Ω−→
F

.

Furthermore, adjacent affine sets might have a very similar

geometry. In such cases, it is physically justifiable to as-

sume the validity of a 2-D projective model[17] that simul-

taneously captures several adjacent affine sets, and thus in-

cludes more context than each separate set. Detecting such

cases will help us produce a more accurate and compact

estimation of
−−→
Fx,y , while fully preserving the desired geo-

metrical flexibility. In next section we propose a method for

detecting MAS between pairs of images in general scenes,

while also including a simple scheme for detecting locally

planar surfaces, and detecting larger projective sets.

3. Maximizing Matches via Aligned Co-

Segmentation

Following section (2), we propose a method to adjust ini-

tially detected local features for capturing the MAS around

every match. As the input to our system, we assume that we

are given feature matches between two images (source and

target) produced by any standard feature matching pipeline.

From every individual match, it is straightforward to extract

the underlying affine transformation. The prime observa-

tion is that patches around the initial feature that agree on

the same affine transformation are necessarily contained in

the MAS. Improving the estimation of that transformation

(a) Extracting aligned patches (b) Aligned Co-Seg (c) Re-projection

Figure 2: An example of the co-segmentation process: (2a)

- Extracting a rectified rectangle from the source image, and

warping the corresponding shape in the target image to the

same coordinate system. Absolute difference between the

aligned patches is brought for reference. (2b) - The out-

put of the co-segmentation network vs. the ground-truth

validation, strong correspondence appears in red. (2c) - Co-

segmentation result super-imposed on the original regions.

will allow us to better represent the local geometry, and cap-

ture more of the MAS. Thus, at this point, we have two

goals: 1- Substantially improve the local transformation es-

timation. 2- Occupy the maximal affine set around the fea-

ture.

3.1. Initial Analysis: Verification, Expansion and
Affine Transformation Refinement

Given a set of initial feature matches between two im-

ages, we follow the expansion and refinement procedure

given in [11], separately for every match, to get a list of

affine-consistent point matches around every initial feature

match, and their corresponding affine transformation es-

timation.1 We then represent each refined match as the

minimal rectified rectangle containing all its correspond-

ing affine-consistent points in the source image, and the

newly estimated affine estimation. To better approximate

the MAS, further expansion steps are performed on the re-

fined match until it cannot be grown anymore.

3.2. Affine Region Unification

Following 3.1, we now have a set of independent local

matches attached with an affine transformation for every

match. In practice, many of these matches may contain

signficant redundancy. For creating a more compact list of

accurate matches, we observe that some of these matches

may be unified to one larger local match, that will simplify

the representation of the matching field
−−→
Fx,y . In some com-

mon cases, like planar or very distant surfaces, this unifica-

tion can go very far. The main challenge in unifying these

affine matches is in preserving their accuracy. We present

a simple scheme for unifying affine matches that doesn’t

only compact the list of matches, but can also increase the

1Full implementation is given in http://www.ipol.im/pub/art/2017/154/
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coverage of
−−→
Fx,y , while at least preserving the initial accu-

racy. For this purpose, we make two observations: 1) It may

be beneficial to group several affine matches and estimate a

projective transformation[3], especially for affine matches

lying on the same plane or very distant surface. 2) From

an information standpoint, grouping matches together cre-

ates a unified match with greater contextual information for

higher match accuracy[11].

Given these observations, there are many considerable

unification schemes. We provide a simple alternative by

scanning the list of matches and performing the following:

Neighbor Extraction - For every scanned match (cur-

rent match), we extract a sub-list of neighbors. These are

matches whose rectangles sit close enough in the source im-

age to the rectangle of the current match (a typical threshold

would be 10% of the diagonal of the image).

Neighbor Consensus - For each neighbor, we check if

the transformation estimation of the current match can pre-

dict the transformation of the neighbor. That is, it agrees

with the neighbor match up to a desired error threshold (e.g.

2 pixels). For all positive cases, we merge the neighbor-

ing matches into the current match and represent it by the

rectified rectangle that contains all merged neighbors in the

source image.

Model Selection - In this stage, we wish to select the

correct geometrical model for the newly unified match. For

this, we fit a joint projective transform to the current match

and all its positive neighbors [3]. If the re-projection er-

ror of the transform on each of the independent matches is

smaller than a desired threshold (e.g. 2 pixels), we choose

the joint projective model. Otherwise, we preserve the orig-

inal model of the current match.

List Update - We remove all the positive (merged)

neighboring matches from the list.

3.3. Co­Segmenting Aligned Patches

Following 3.2, we now have a set of independent local

matches represented by rectified rectangles in the source

image and their corresponding local transformation estima-

tions. In most cases, the rectified rectangles will contain

outlier pixels that do not agree with the attached local trans-

formation (Fig. 2b). This is especially true in cases of sig-

nificantly expanded matches. The goal of the next and final

step is to accurately select the inlier pixels within each local

match, and discard the outliers. To eliminate the known ge-

ometrical differences between the patches, we use the local

transformation to warp the target patch into the coordinate

system of the rectangular source patch to create geometri-

cally aligned candidate frames (Fig. 2a). Thus, our new

mission is now to accurately detect the matching pixels be-

tween these frames.

At this stage it might be tempting to try and calculate pixel-

wise RGB differences between the patches. Locations with

(a) Siamese Representation

(b) Multi-Res Aggregation

(c) Shared Output Classifier

Figure 3: The modules of the Co-Segmentation Net-

work:(1) d-x - output of x channels (2) dx2 - output with

twice the number of channels as the input (3) s-x - output

stride of x.

RGB differences lower than some threshold will be con-

sidered inliers. This approach doesn’t only involve setting

an arbitrary threshold, but is also not robust to many pos-

sible nuisances like radiometric variations, noise and small

residual geometric errors. As there are more sophisticated

ideas for solving this intuitive comparison problem, it is ex-

tremely hard to devise a manual algorithm that will take all

challenges into account and optimally combine the infor-

mation to achieve accurate segmentation of inliers.

3.4. Fully Convolutional Co­Segmentation of Pairs

For the mission defined in 3.3, we choose to use

the massive representational power of CNN’s. We com-

bine fundamental ideas from both binary patch compar-

ison methods[14, 31], and fully-convolutional segmenta-

tion methods[22] to create a fully-convolutional neural net-

work for co-segmentation of geometrically aligned image

patches. The network is relatively shallow and designed for

quick deployment with low memory consumption for allow-

ing batch inference of multiple patch pairs. Accordingly, all

the convolution operations are based on a 3× 3 kernel. The

network is composed of three functional modules:

A Siamese Representational Module - this module

drives the rich independent representation of each patch in

multiple resolutions (Fig. 3a). Following[9], we apply an

Xception layer as the basic building block. This operation

is economic in memory, quick to train, and still provides

strong representational power. The module is built as a

common neural encoder, increasing the depth of the repre-

sentation, while decreasing the spatial dimension and thus

increasing the receptive field to include more context. The

parameters of the network are shared between the pipelines

of the input patches, making it a Siamese module. For each

of the two pipelines, there are four outputs in different res-

olutions.

A Multi-Resolution Aggregation Module - in this

module, we aggregate the independent representations of

both patches to create a representation of the relations be-
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tween the patches (Fig. 3b). This operation is done on the

representations of all resolutions. Inspired by the intuition

of normalized cross-correlation, we first normalize the two

incoming representation across their depth to a unit vec-

tor and then multiply them to one product which is moved

through an Xception layer to produce a fixed depth repre-

sentation (32 in our case). We then combine this result with

the output of the Multi-Resolution layer of the lower res-

olution after a ×2 bilinear up-sampling. Since this opera-

tion is recursive in nature, it allows aggregating finer patch-

comparison information while preserving contextual infor-

mation from lower resolution representations.

The Output Classifier - Finally, we wish to produce a 1-

channel map that decodes the decision for every pixel of the

patch. This output is produced by a point-wise (1× 1) con-

volutional operation, that effectively works as a shared lin-

ear classifier for every pixel. The highest resolution output

map produced by the network is two times smaller than the

original patches, and can be interpolated back to the original

resolution if needed. The network also produces outputs in

lower resolutions that are discussed in the section concern-

ing network training (4.3).

4. Training the Co-Segmentation Net

Training was supported by a standard state-of-the-art

framework for optimizing neural networks. We used the

Adam optimizer[20] for dynamically controlling the learn-

ing rate. In the following sub-sections we share a few non-

standard notions regarding training.

4.1. Getting Ground Truth

For training the co-segmentation network described in

3.4, we need examples of geometrically aligned patch pairs

with a known agreement map between them as a label

(Fig. 2b). For extracting realistic data, we applied the

steps in (3.1-3.3) to extract aligned candidate frames (3.3)

from two different datasets containing sub-pixel accurate

ground truth for the matching field
−−→
Fx,y: the Middlebury

stereo dataset[27], and the computer-graphics based Flying-

Things dataset [25]. For each pixel in an aligned candidate

frame, we measure the euclidean displacement error with

respect to the ground truth field.

4.2. Label Generation and Loss Metric

Given the displacement errors, we wish to generate la-

bels appropriate for training. Theoretically, we can set a

desired error threshold to create a binary label map. In prac-

tice, we map the displacement errors smoothly to the inter-

val [0, 1] to create soft labels that better reflect the ground-

truth data. Thus, if we wish an error of τ pixels to be

mapped to the border-line decision 0.5, we apply the map:

Z = exp((δ/τ)2 ∗ log(0.5)) to every displacement error δ

(a) Sintel example (b) H-Patches example

Figure 4: Result examples on the different tested datasets:

(4a) - All methods produce a high rate of roughly cor-

rect matches due to relatively small displacements, while

the proposed methods produces a more compact and ac-

curate representation. (4b) - Harris-Affine and Deep-

Matching produce many accurate matches, but also a con-

siderable amount of false matches, while the proposed Co-

Segmentation is more concise and accurate.

to create the ground-truth labels. We notice that this func-

tion maps the zero error δ = 0 to Z = 1, which is a purely

positive label, while Z goes smoothly to a negative label as

δ increases. Having Z ∈ [0, 1], we use the Sigmoid Cross-

Entropy loss L = −x · z + ln(1 + exp(x)) for every output

pixel with value x, and ground-truth z.

4.3. Multi­Resolution Training

In principle, the network can have a single output map

in the desired maximal resolution. As shown in Fig.3c, we

have also simultaneously trained against lower resolution

versions of the ground-truth labels. While this may seem

sub-optimal from an optimization standpoint, we found that

it didn’t only significantly boost the training process, due

to direct gradient propagation, but also effectively boot-

strapped the lower-resolution layers to create better repre-

sentation serving the higher-resolution layer. In practice,

we found that avoiding the multi-resolution loss at any stage

of the training, didn’t noticeably improve the training loss,

while deteriorating the validation loss.

5. Matching Experiments

We compare the proposed method to state-of-the-art

matching techniques under different scenarios, in two main

aspects: scene coverage and matching accuracy. To empha-

size the general applicability of the proposed method, we

conduct our tests on two conceptually distinct datasets:

The Sintel dataset (“Clean” pass)[5] - containing syn-

thetic images of 23 action clips with moderate motion statis-

tics supplied with pixel-wise ground truth on a total of 1041

image pairs. In the context of local matching, the main chal-

lenge in this dataset is handling low textured areas.

The H-Patches dataset (“Viewpoint” part)[1] - con-

taining images of 59 planar scenes imaged from different
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(a) Sintel Coverage (b) Sintel Precision

(c) H-Patches Coverage (d) H-Patches Precision

Figure 5: Matching Performance: (5a,5b) Successful cover-

age and precision of Ω−→
F

, achieved by the different methods

while varying the error standard (T ) on Sintel; (5c) Success-

ful coverage under variable viewpoint change on H-patches;

(5d) Precision on H-patches dataset. (errors > 15 pixels

considered as outliers)

viewing angles, supplied with the ground truth homogra-

phies of a total of 295 image pairs. The main challenge

in this dataset is in handling significant viewpoint changes.

Image regions outside the main plane of the scene were ig-

nored in all experiments.

We examine the matching performance of the proposed

method relative to the matching methods used for initial-

ization (SIFT and Harris-Affine respectively), the results

after the affine-expansion[11] we described in 3.1, Deep-

Matching[26] which is a state-of-the-art method for model-

free combined local and global matching, and PWC [28],

which is a fully trainable optical-flow method that specif-

ically excels in wide-baseline scenarios. We compare the

different methods under the accurate coverage criterion,

where we follow [26] to define coverage@T as the portion

of Ω−→
F

covered by “correct” matches. A pixel is defined

“correct” when its matching error is below T pixels. Fol-

lowing [26], for all referenced methods, a pixel is consid-

ered covered if a correct match exists within a 10 pixel dis-

tance. Since the proposed method is fully dense, we force a

more strict coverage criteria for it, considering a pixel cov-

ered only if it explicitly has a correct match.

We note that these criteria present a trade-off be-

tween capturing more of Ω−→
F

, and avoiding false matches.

Since different applications demand different precision, we

present the results while varying T . In Fig. 5a, we observe

how Deep-Matching achieves significantly more coverage

relative to SIFT and affine-expansion on the Sintel dataset

for almost every threshold T . The proposed method, initial-

ized by the same SIFT and affine-expansion, outperforms

Deep-Matching on all thresholds. We note that the cov-

erage gap between the two methods decreases as T is in-

creased, indicating that a main advantage of the proposed

method in this context, lies in precision (5b). For reference,

we observe the preferable coverage of PWC on this classic

optical-flow scenario, while the results are still comparable

to the proposed method, which is purely local.

In fig 5c, we see how Deep-Matching falls slightly be-

hind the affine methods on the geometrically challenging

Hpatches dataset (Fig. 4) due to the high applicability of

the affine model on planar scenes. Looking at Fig. 5c,

we can explain the lower coverage of Deep-Matching on

this dataset, by its sensitivity to bigger viewpoint changes.

Again, we observe how the proposed method, initialized

by the Harris-Affine and affine-expansion, considerably im-

proves upon their coverage on all thresholds T and in all

viewpoint conditions, while also improving the overall rate

of correct matches (5d) under different thresholds. For ref-

erence, we observe how PWC struggles with the growing

displacements introduced by the H-Patches data-set, and

quickly deteriorates as the viewpoint change increases.

Note on Results - As the proposed method is merely

a local boosting method, its results are strongly dependent

of the initializing method and areas without nearby local

matches might not be covered. We found that the over-

all coverage of our method can be further increased by us-

ing higher quality alternatives for initial matching,2 such as

[21], while preserving the desired matching compactness.

These results were omitted from this comparison due to the

high computational demand of [21] which is not compara-

ble to the traditional methods used in our tests.

6. Conclusions

We presented a comprehensive method for boosting lo-

cal image matching methods, that bridges the performance

gap between local and global matching techniques in small

displacement scenarios, while dramatically outperforming

state-of-the art methods in more challenging scenarios. An-

other important contribution of the presented method, is in

packing the geometric relationship between images in sig-

nificantly bigger atoms that vastly cover the scene while ac-

curately including low-textured regions. This has dramatic

implications on point-wise applications like 3-D structure

estimation, and combinatorial iterative tasks like parametric

motion-segmentation and global transformation estimation,

where bigger atoms can be extremely useful to reduce the

number of iterations.
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